Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Rep ; 13(1): 5599, 2023 04 05.
Article in English | MEDLINE | ID: covidwho-2272667

ABSTRACT

COVID-19 is a newly recognized illness with a predominantly respiratory presentation. Although initial analyses have identified groups of candidate gene biomarkers for the diagnosis of COVID-19, they have yet to identify clinically applicable biomarkers, so we need disease-specific diagnostic biomarkers in biofluid and differential diagnosis in comparison with other infectious diseases. This can further increase knowledge of pathogenesis and help guide treatment. Eight transcriptomic profiles of COVID-19 infected versus control samples from peripheral blood (PB), lung tissue, nasopharyngeal swab and bronchoalveolar lavage fluid (BALF) were considered. In order to find COVID-19 potential Specific Blood Differentially expressed genes (SpeBDs), we implemented a strategy based on finding shared pathways of peripheral blood and the most involved tissues in COVID-19 patients. This step was performed to filter blood DEGs with a role in the shared pathways. Furthermore, nine datasets of the three types of Influenza (H1N1, H3N2, and B) were used for the second step. Potential Differential Blood DEGs of COVID-19 versus Influenza (DifBDs) were found by extracting DEGs involved in only enriched pathways by SpeBDs and not by Influenza DEGs. Then in the third step, a machine learning method (a wrapper feature selection approach supervised by four classifiers of k-NN, Random Forest, SVM, Naïve Bayes) was utilized to narrow down the number of SpeBDs and DifBDs and find the most predictive combination of them to select COVID-19 potential Specific Blood Biomarker Signatures (SpeBBSs) and COVID-19 versus influenza Differential Blood Biomarker Signatures (DifBBSs), respectively. After that, models based on SpeBBSs and DifBBSs and the corresponding algorithms were built to assess their performance on an external dataset. Among all the extracted DEGs from the PB dataset (from common PB pathways with BALF, Lung and Swab), 108 unique SpeBD were obtained. Feature selection using Random Forest outperformed its counterparts and selected IGKC, IGLV3-16 and SRP9 among SpeBDs as SpeBBSs. Validation of the constructed model based on these genes and Random Forest on an external dataset resulted in 93.09% Accuracy. Eighty-three pathways enriched by SpeBDs and not by any of the influenza strains were identified, including 87 DifBDs. Using feature selection by Naive Bayes classifier on DifBDs, FMNL2, IGHV3-23, IGLV2-11 and RPL31 were selected as the most predictable DifBBSs. The constructed model based on these genes and Naive Bayes on an external dataset was validated with 87.2% accuracy. Our study identified several candidate blood biomarkers for a potential specific and differential diagnosis of COVID-19. The proposed biomarkers could be valuable targets for practical investigations to validate their potential.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Humans , Bayes Theorem , Influenza A Virus, H3N2 Subtype , Gene Expression Profiling/methods , Biomarkers , Formins
2.
Sci Rep ; 11(1): 4725, 2021 02 25.
Article in English | MEDLINE | ID: covidwho-1104543

ABSTRACT

The multifaceted destructions caused by COVID-19 have been compared to that of World War II. What makes the situation even more complicated is the ambiguity about the duration and ultimate spread of the pandemic. It is especially critical for the governments, healthcare systems, and economic sectors to have an estimate of the future of this disaster. By using different mathematical approaches, including the classical susceptible-infected-recovered (SIR) model and its derivatives, many investigators have tried to predict the outbreak of COVID-19. In this study, we simulated the epidemic in Isfahan province of Iran for the period from Feb 14th to April 11th and also forecasted the remaining course with three scenarios that differed in terms of the stringency level of social distancing. Despite the prediction of disease course in short-term intervals, the constructed SIR model was unable to forecast the actual spread and pattern of epidemic in the long term. Remarkably, most of the published SIR models developed to predict COVID-19 for other communities, suffered from the same inconformity. The SIR models are based on assumptions that seem not to be true in the case of the COVID-19 epidemic. Hence, more sophisticated modeling strategies and detailed knowledge of the biomedical and epidemiological aspects of the disease are needed to forecast the pandemic.


Subject(s)
COVID-19/epidemiology , Algorithms , Disease Outbreaks , Forecasting , Humans , Iran/epidemiology , Models, Statistical , Pandemics , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL